AD-A283 916
Rt

Representing and Reformulating Diagonalization

Methods
Erica Melis |
July 1994 QL’I!:CITQ v

CMU-CS-94-174 », SEP 0213994 -

Accesion For

School of Computer Science NTIS CRA& g '
O

. . . DTIC TAB
Carnegie Mellon University | (nannounced

Pittsburgh, PA 15213 Justification «

By
Distribution |

-l ——

The author is on leave from University of Saarbriicken

Availability Codes

. Avail and|or
Dist Special

Abstract & I L

Finding an appropriate representation of planning operators is crucial for theorem provers
that work with proof planning. We show a new representation of operators and demonstrate
how diagonalization can be represented by operators. We explain how a diagonalization
operator used in one proof-plan can be analogically transferred to an operator used in another
proof-plan. Finally, we find an operator that is common to all the proof-plans and thus might
be considered as the Diagonal Method.

) 94-28638
T

This research was supported by the Max-Kade Foundation

., :' 2l

g4 9 01 193

e

Keywords: proof planning, analogy, knowledge representation

1 Introduction

As pointed out by Bundy [3] and Bledsoe [1], using proof-plans is often very helpful in
automated deduction. In planning, operators are needed and therefore an appropriate rep-
resentation of these operators is crucial for proof planning. The operators have the same
function in proof planning as mathematical methods (in the following referred to as m-
methods) have in human theorem proving. Since m-methods can be adapted to different
proofs, it is also desirable to have mechanisms for adapting operators. To be employed by a
human-oriented theorem prover, these operators should allow for representing logical proof
methods, such as Indirect Proof, and mathematical methods, such as Cantor’s Diagonal
method.

In this paper we examine whether the presented representation actually covers math-
ematician’s methods and how the methods can be adapted for other proof plans. We do
this by analyzing the well-known Diagonal Method which is central and widely applicable
in many mathematical proofs concerning computability and decidability, including Godel’s
Incompleteness theorem for arithmetic, the Unsolvability of the halting problem, Rice’s the-
orem (see [5]), and the Second Recursion theorem (see [5]). Although this m-method seems
to be clearly understood, not all proofs have an obvious common proof schema, and some
proofs are difficult to generate in logical detail.

After defining our representation of operators by methods, we investigate several proofs
in which mathematicians have used diagonalization. We sketch these proofs and show which
methods belong to the respective proof-plans. We also discuss, how a method from the proof-
plan for Cantor’s theorem can be transferred to a method for a proof-plan of the halting
problem and of Godel’s First incompleteness Theorem. Finally, a comparison of the methods

yields a new method that is common to all the proofs and which might be considered as the
Diagonal Method.

2 Representation of Methods

First we give a brief definition of methods that allow for reformulation (For more details see
(6, 8)).

Sequents P, written as (ass F concl), are pairs of a set ass of formulas and a formula
concl in an object language that is extended by meta-variables for formulas, sets of formulas,
and terms’. As an abbreviation, we shall display formulas F instead of sequents (@ - F).

Methods M are frame-like structures similar to Bundy’s methods in {3]. Methods have the
slots parameter, preconditions (pre(M)), postcondition (post(M)), constraints, proof schema
and procedure. Preconditions is a set of sequents, postcondition is a sequent; both pre- and
postconditions are needed in planning. Constraints are formulated in a meta-language and
serve to restrict the search during planning and may, e.g., express restrictions of pre(M) and
post(M). The proof schema is a declarative schematic representation of incomplete proofs?

(ass i concl) expresses “concl is inferred from ass”.

?Incomplete in the sense that it may have nonaxiomatic preconditions and may be incorrect.

in the object logic, re ., on the Natural Deduction (ND) calculus. The lines of the proof
schema may contain method names as the justification for an inference, hence methods are
recursively defined, with basic methods corresponding to basic ND-inference rules. These
inference rules are implemented as schemas with meta-variables and justify any inference
that can be obtained by instantiating meta-variables in the schema. Like for a Hoare triple,
after applying the proof schema to pre(M), post(M) should result. The program in the slot
procedure executes the application of the proof schema by interpreting the proof schema.
The structural template for methods is:

method: name of the meth -

parameter parameters w. . . . be instantiated

reconditions preconditions taa* huve to be true for the method to be
P applicable -

ostcondition postconditions that shouid be fulhlled atter the method
P application, e.g., a derived sequent
constraints meta-language constraints tuat .nay restrict pre- and post-

conditions, parameter
proof schema | a declarative proof schema

procedure procedure that interprets the proof schema

The proof schema of a method M may contain so-called LEMMA-lines in which an
element of pre(M) occurs and that have LEMMA as their justification. The proof schema
of a method may also have PLAN-lines, that contain a method-variable PLAN; as the
justification, which means that the method to be applied is not specified. A method with a
PLAN-line is considered equivalent to the method for which the PLAN-line is replaced by a
LEMMA-line and that contains the sequent of the PLAN-line as a precondition.

A method M is verifiable if it can recursively be checked that for every instantiation
of the meta-variables the method is correct, i.e., it yields a correct proof of post(M) when
applied to pre(M) in case the constraints are satisfied.

The methods defined here differ from those in [3] mainly in that the tactic slot is replaced
by a declarative proof schema and a procedure interpreting this schema. The intention
behind this difference is to enable reformulations of methods.

3 The Diagonalization Methods

We want to check whether the definition of methods, as described above, is an appropriate
representation for m-methods. To that end we investigate some proofs in which mathemati-
cians have used diagonalization. Usually diagonalizations proceed by

supposing a;,a;... is an enumeration of objects of a certain kind. Then an object a of
the same kind is constructed, that is different from every a, using the following principle:
“Make a and a,, differ at n.” The interpretation of differ at n depends on the kind of object
involved.

In the following we examine proofs of

. Cantor’s Theorem, which states that for any set M the cardinality of M is smaller

than the cardinality of the powerset PM of M,
cardM < cardPM (see [2})

. Uncountability of the set of real numbers (actually the interval [0 1]), which

means that card N < card [0,1] (see [4])

Unsolvability of the Halting Problem for Turing machines, which means there
is no algorithm (no t-computable function) to determine whether an arbitrary Turing
machine in an arbitrary configuration with a finite length of nonblank tape symbols
will eventually halt (see [7]). That is, no t-computable function ¢ exists with

oft, conf,) = 1 : tdoesnot halt with conf,
Oy =10 : thalts with conf,

. Godel’s Incompleteness theorem for S, which states that there is a sentence in

the language of arithmetic S with addition and multiplication that is not provable in
S neither is its negation(see [10]).

3.1 The Proof Sketches
Throughout the paper (M — N) denotes the set of functions from M to N.

3.1.1 cardM < cardPM
1. Unfold definition

The theorem cardM < cardPM is rerepresented by applying the definition of the
partial order of cardinals to the theorem:

There is a one-to-one correspondence from all elements of M to a subset of PM, but
no one-to-one correspondence from all elements of PM to a subset of M. Since the
proof of the first part is trivial, the task can be reduced to prove

-3fVz3y(f € (M » PM)A(z € PM - ye MA f(y) = z)).

. Indirect proof

Derives ~3fVz3Iy(f € (M — PM)A(z € PM — y € M A f(y) = z)) via a contradic-
tion. This means, the indirect assumption* is
Vz3y(z € PM — y € M A F(y) = z), for a function F € (M — PM).

3. Method D1 yields the contradiction. In more detail, D1 includes the derivations of

(a) the existence of a function G(z) with G(z) = nonF(zz) with

)= {32 250

3

¢ would be the characteristic function of the halting problem.

“We call the negations of the theorem to be proved by an indirect proof the indirect assumption.

3

By using the precondition (0): Vg(¢g € PM — Vz(z € M — g(z) € {0,1})),
which is part of the representation lemma for PM, the indirect assumption is
expressed by

-~3fVzIy(f € M~ M {0,1})A(z € PM — y € M A f(y) = z)). Thus the
application of a comprehension axiom becomes possible.

Preconditions for this step are (0), the indirect assumption and the comprehen-
sion axioms® for nor. and compound functions.

(b) Vz(z € M — (F(z)(z) = 0 - G(z) = 1) A (F(z)(z) # 0 = G(z) = 0)).
Preconditions are (a) and the definitions of non and G.

(¢) G(z) € PM. Preconditions for this step are
(2): VgVz(z € M — g(z) € {0,1}) - g € PM) and 1,0 € {0,1}.

(d) F(zo)(ze) = G(z0). Preconditions are the indirect assumption and G € PM.

(e) L is proved in two steps from F(zozo) V —F(zoZo):
derive L from F(zpzo) = 0 and
derive L from F(zozo) # 0. Preconditions are (c), (b), the definition of F,
1#0,Vz(z = z).

The precondition Vg(g € PM « (Vz(z € M — g(z) € {0,1}))), i.e. (0) and (2), is a
representation lemma that states that each subset of M can be represented as a function
from (M — {0,1}). Figure 1 shows the proof structure of the proof of Cantor’s theorem as
well as of the proof of the uncountability of IR.

f(x0)(x0) = Gi{xo)
contradiction \

—~——

inciirect assumption definition of non, G

| representation of PM

Figure 1: Proof Structure of Cantor’s Theorem

5This idea is due to X.Huang and M.Kerber who also gave an ND-proof

3.1.2 card N < card|0,1)

1. Unfold definition
The theorem card N < card|0, 1) is rerepresented by applying the definition of the
partial order of cardinals to the theorem:
There is a one-to-one correspondence from all elements of N to a subset of [0,1], but
no one-to-one correspondence from all elements of [0,1] to a subset of N. Since the
proof of the first part is trivial, the task can be reduced to prove

~3fVzIy(f € (N~ [0,1]) A (z € [0,1] = y € N A f(y) = 2)).

2. Indirect proof
Derives ~3fVz3y(f € (N~ [0,1]) A (z € [0,1] - y € N A f(y) = z)) via a contradic-
tion. The indirect assumption is Vz3y(z € [0,1] — y € N A F(y) = z) for a function
constant F € (N — [0,1}).

3. Method D2 yields a contradiction. In more detail, D2 includes the derivations of

(a) the existence of a function G(z) with: G(z) = nonF(zz) for

By using the precondition (0): Vg(g € [0,1] — Vz(z € N — ¢(z) € {0...9})),
which is part of the representation lemma for [0, 1], the indirect assumption can
be written as
-3fVz3y(f e N— N+ {0...9})A(z € [0,1] = y € NA f(y) = z)). Thus
the application of a comprehension axiom becomes possible. Preconditions for
this step are (0), the indirect assumption and the comprehension axioms for non
and compound functions.

(b) 3gVz(z € N — (F(z)(z) = 0 - G(z) = 1) A (F(z)(z) # 0 ~ G(z) = 0)).
Preconditions for this step are (a) and the definitions of non and G.

(c) G(z) € [0,1]. Preconditions for this step are
(2): VgVz(z € N - g(z) € {0...9}) - g € [0,1]) and 1,0 € {0...9}.

(d) F(zo)(ze) = G(z0). Preconditions are the indirect assumption, and G € [0, 1].

(e) L is proved in two steps from F(zozo) V F(zozo):
derive) from Fzqozo = 0 and
derive L from Fzozo # 0. Preconditions are (c), (b), the definition of F,
1#0,Vz(z = z).

Figure 1 also shows the proof structure of the IR-proof for PM is replaced by [0,1]. The
precondition Vg(g € [0,1] & (Vz(z € N — g(z) € {0,1}))) is given by a representation
lemma that states that each real number in [0,1] can be represented as a function from

(N~ {0...9}).

3.1.3 Unsolvability of the Halting Problem

We follow the proof of the halting problem in [2]. Prior to conducting the proof, a Godel
enumeration of the configurations is assumed and the fact that Turing machines are t-
computable functions. Consequertly “t halts on config,” is equivalent (modulo the pre-
sumed theory) to “¢(y) is defined” and “t does not halt on config,” is equivalent to “t(y) 1s
undefined” for y € N, and thus the halting problem can equivalently rerepresented as
There is no t-computable function ¢ such that for y € N

0 : t(y)defined
c(t(y))={1 : t(zg undl;ﬁned

That is, the theorem is then 3c~(c € T AVt,n(t € T An € N — (c(t(r)) € {0,1}))), where
¢ € T means c is t-computable. Assuming a Gédel enumeration F' of Turing machines, each
Turing machine t,, is an F(m) for m € N and F(mn) = tnm(n).

1. Indirect proof
derives the theorem via contradiction, starting with the indirect assumption
ceTAVtn(te T An €N — (c(t(n)) € {0,1})).

2. Method D3 infers a contradiction from the indirect assumptions (¢ € T') and (0):
Vt,n(t € T An € N — (c(t(n)) € {0,1})). In more detail, D3 includes the derivations
of

(a) the existence of G(z) = non F(zz), where

non(z) = 0 : z undefined
~ 1 undefined : =z defined

Preconditions are the definitions of non and F.

(b) (G € T). It is shown that since c is t-computable, non is t-computable, and so is
the composition of non, F.

(c) Vz(z € N = (¢(Fzz) = 0 = o(Gz) = 1) A (¢(Fzz) # 0 — ¢(Gz) = 0)).
Preconditions are (a) and the lemma (8): Vz((cz = 0 — cnon(z) = 1) A (cz #
0 — cnon(z) = 0)) that can be derived from the definitions of ¢ and non.

(d) F(zo)(zo) = G(xo) for a constant zo. Preconditions are G € T and the enu-
merability of Turing machines.

(e) L is proved in two steps:
derive L from cFzozo = 0 and
derive L from cFzozo # 0. Preconditions are (d), (c), 0 # 1, Vz(z = z),
(H Vv -H)®, and the definition of c.

Figure 2 shows a proof structure of the proof of the halting problem.

&Proof sketch: Since cF(zozo) = ¢G(2o). Case 1: cF(zozo) = 0, then ¢cG(zo) = 0 then cF (zozo) = 1
then 0 = 1. Case 2: cF(zozo) # 0 then ¢G(zo) = 0 and cF(zozo) = 1 then cF(zozo) =0 then 0 = 1.

6

m
rmuem
®
{'M(whﬁm
ovmd N\
’ \
Immum defisition of c, w08, G oumonbily of T
comprehension wdom
cmpitabilly of non 0 {1
X=X
{computabilly of compoumds HornotH

Figure 2: Proof Structure of the Halting Problem

3.1.4 Godel’s Theorem

The following mathematical proof is taken from [11].

A Godel numbering f of the expressions in S with one variable is assumed.

Lemma: The predicate R(xy) which states that the proof with Godel number y proves the
sentence which is the instantiation ¢,(x) of an one-variable-expression ¢, with Gédel number
x by the number x is numeralwise expressible by R(zy) in the arithmetic S.

Consider the formula Vy—~R(zy). It has a Godel number p, and thus Vy—R(zy) = ¢,(z).
Now consider the formula ¢,(p), i.e., Vy~R(py) which contains no variable free.

Theorem: If the number-theoretic formal system S is consistent, then not s ¢,(p); and
if the system is w-consistent, then not g —~¢,(p).

To reveal the similarity between the proof of Gidel’s theorem and the previous proofs,
we introduce a function w which can be defined for sentences H by w(H) = provable.in_S (H),
i.e., w is a function from object language sentences to meta-formulas. By the lemma above,
we have w(¢,(x)) = w(f(zz)) = 3yR(zy). Thus a logical reconstruction of the proof is:

1. Indirect proof
Derives -Vg,z(g € E — (z € N — ((wg(z)) V (w~g(z)))) via contradiction. A
weakened” indirect assumption is Vg,z(g € E —» z € N — ((wg(z)) V (w—g(z)))),
where E is the set of all expressions in S with one free variable.

2. Method D-Géodel yields the contradiction. In more detail, D-Godel includes the
derivations of

"Weakened because it is only for sentences g(z) with g € E.

(a) the existence of G with G(z) = non w(f(zz)), which is substantiated by the
definitions of formulas and of w, f and by the definition non(F) = - F.

(b) G € E. Preconditions are the definition of E and the lemma (that provides
G(z) = ~3yR(zy)).

(c) f(z0)(zo) = G(zo) for a constant zo. Preconditions are (b) and the enumeration
of the expressions of S by f.

(d) L. This is shown by deriving a contradiction from wGzo V w—~G(z4)®%. Precondi-
tions are (8): Vz((w(z) — w(non(non(z))))A(~w(z) — w(non(z)))), the second
conjunct of which is the indirect assumption, and the definitions of w, R, G, the
consistency of S, and the w-consistency of S.

In order to obtain a version of the method which is better comparable to D1, D2, and
D3, we additionally introduce a characteristic function c for sentences H of S by

0 : +sH
"(H)={1 . be-H

Then (8): Vz((¢(z) = 0 — ¢(non(z)) = 1) A (c(z) # 0 — c(non(z)) = 0)) can be derived.
Furthermore the proof of the contradiction can be replaced by a subproof starting with
assuming cw(f(zo, zo)) = 0V cw(f(zo, z0)) # 0 as an instantiation of (HV-~H). Summarize
this new version D4 consists of the subproofs:

(a) Show the existence of G(z) with G(z) = non wf(zz). Preconditions are the defini-
tion of formulas, the definitions of non, f, and (0): Vg(g¢ € £ — (z € N — wg(z) €
set_of meta_formulas)).

(b) G € E which follows from (a) and the lemma.

(€) f(zo)(zo) = G(zo) for a constant zo. Preconditions are (b) and the enumeration of
E by f.

(d) Vz((cwf(zz) = 0 = cG(z) = 1) A (cwf(zz) # 0 — ¢G(z) = 0)) which can be proved
using (a) and (8).

(e) L. As indicated above, L is proved starting with
cw(f(zo, 20)) = 0V cw(f(zo,20)) # 0. Relying on (d), cw(f(ze,z0)) = 0 leads to
a contradiction, using the w-consistency of S?, (c), and 0 # 1 (which encodes the
consistency of S), and cw(f(zo,z0)) # 0 leads to a contradiction as well, using (c), the
definition of R, and z = z.

8Proof sketch: Assume wG(zo), then F G(zo), then exists a proof px of G(zo), then + R(zok), then
F =G(zo) because of (8), then w—G(zo), then L because of consistency of S. Hence, ~wG(zo), then not
exists a proof of G(zq), then R(z00), R(z¢l)... are false because of (8), then + ~R(z0)... because of the
definition of R, then i ~Vy—R(zoy) because of w-consistency of S, then I -Gz because of the definition of
G, then ~u—~G(zo) which yields the contradiction with w—G(z).

$The w-consistency states that If ~R(0y),~R(ly),... then I ~¥z—R(zy), which allows to deduce
cG(zo) =1 — cwG(zp) = 1.

This proof version provides a larger commonality of the partial proof schemas for D1, D2,
D3, and D4. Figure 3 shows the proof structure of a proof of Godel’s theorem.

| contruction of G in E

f{xo)xo) = Gi{xo)
(] \

lenmma definition Bop, ¢ definition of R, w, G enumenbility of E
definitions of non, v, f consisiency
def. of expressions ?

indirect sssumption

Hormt R

X=X

Figure 3: Proof Structure of Godel’s Theorem

3.2 The Methods

One of the methods in all four proof plans is Indirect Proof:

method: Indirect Proof

parameter F: formula, A: set of formulae

preconditions

postcondition | A+ F

constraints
1. ;=F F =F (HYP)
2. A-F F (PLAN)
proof schema 3 A b (= 1:2)
4. A; FF (-=D:3)
procedure schema-interpreter

A method that jointly represents D1 and D2 is D12, where (1) is the indirect assumption
referred to in D1 and D2, equ denotes the application of an equality axiom, and Method;
denotes submethods.

method: D12
parameter F: function, M1, M2: structures, U: set, H: formula
(0WVgVz{g € M2 — (z € M1 - g(z) € 1))
(1) Vz3y(z e M2 -y € M1 AF(y) =1z),(6) 1 #0,
preconditions | (2) VgVz((z € M1 — g(z) € U) — g € M2),(5)Vz(z = z),
(3) U C domain(non), (4) 0 € UAL € U, (7) (HV —H),
(8) Vz((z # 0 — non(z) = 0) A(z = 0 — non(z) = 1))
postcondition | 1|
constraints
1. ; F 3gVz(z € M1 — g(z) = nonF(zz)) {comprehen
F,non (0))
2. F Vz(z € M1 — G(z) = nonF(zz)) (3D 1)
3., F Vz(z € M1 - (F(zz) = 0> G(z) = 1) (Method; (8§
A(F(zz) # 0 — G(z) = 0)) 2)
4. ;4 F age Ml (HYP)
5. ; F F(aa) =0V F(aa) £ 0 (M)
6. ;6 + F(aa)=20 (HYP)
7. ;4,6 F Gla)=. (VD,AD,—
D4 6 3)
8. ;46 F G)eU (equ,(3))
9.,;9 F F(aa) #0 (HYP)
10.; 4,9 F Gla)=0 (VD,AD,—
D493
11.; 4,9 F G(a)eU (equ (4))
12.; 4 F Gla)eU (VD 5 8
11)
13.; F a€ M1 —=G(a)el (—»D412)
14.; F Ge M2 (VD,~D,(2)
13)
proof schema | . . F 3z(z € M1AF(z) = G) (VD(1) 14)
16.; F F(zo) =G (3D 15)
17.; F F(z¢,20) = G(zo) (equ 16)
18.; + (.‘to € M1 — (F(zozo) =0- G(.‘L’o) = (VD 3)
1) A (F(z020) # 0 — G(z0) = 0))
19.; b F(zozo) = 0V F(zozo) # 0 (LEMMA)
20.; 20 F F(zozo) =0 (HYP)
21.;20 F G(z0) =0 (eq 20 17)
22.;20 F Glzg)=1 (AD,— D
18 20)
23.; 20 Fo0=1 (ALequ,(5)
22 21)
24.; 20 FoL (ALLI(6))
25.; 25 t F(zozo) #0 (HYP)
26.; 25 F G(zo) =0 (AD,—D
25 18)
27.; 25 F F(zozo) =0 (equ 26
17)
28.; 25 F F(zozo) = 0A-~F(zozo)=10 (A1 27 25)
29.: 25 FoL (LI 28)
30.; F oL (VD29 24
19)

procedure

schema-interpreter

1on

Some Definitions

In the following, goals and assumptions are intended to be sequents. Since in general proofs
are constructed top down and bottom up, we construct proof-plans with forward-methods
used in forward search and backward-methods employed in backward search. For instance,
the method A-deletion is typically employed in forward search, whereas the method A-
introduction is typically employed in backward search!®.

A proof-plan is a forest. Its trees consist of sequent nodes and verifiable method nodes,
where the successor of a sequent node g is a method node M and the successors of a method
node are sequent nodes g, ...,g,= g, such that the following “link condition” is satisfied:
o(post(M)) = g and o(pre(M)) = g for a substitution o (using the obvious extension of o
to sequents and sequences of sequents).

A proof-plan may contain forward-trees the sequents of which are assumptions and which
are constructed by forward search. It may contain a backward-tree with a goal root node and
goals as sequent nodes which is constructed by backward search or a tree which combines
the backward-tree with forward-trees. A

The planning starts with a root goal and assumption leaves (§ - T) and (@ + F;), where F;
is a proof-assumption, or F; € KB, where KB is the knowledge base of axioms, definitions,
and lemmas. The planning proceeds by inserting methods and sequents satisfying the link
condition, always aiming at closing the gap between leaf goals and assumptions. Leaf goals
that are not equal to an assumption are called open goals. As soon as a goal g; equals an
assumption, the two nodes ccllapse and thus the backward- and a forward-tree are combined.
Then g; is no longer an open goal but satisfied. The planning terminates if there are no open
goals anymore.

In a proof-plan P a node N is termed dependent on a node N', if N is an ancestor of N’
or N’ is an ancestor of N in P. A sketch differs from a proof-plan in that it may contain
methods which are not verifiable. Sketches and proof-plans may be summarized by methods.

3.3 Transferring Methods Analogically

The general idea of analogy-driven proof-plan construction detailed in [8] is to use a source
proof-plan as a guide for constructing an analogous target proof-plan. Specifically, we employ
the structure and the methods belonging to the source plan or somewhat reformulated and
restructured methods, for the target proof-plan.

We shall utilize the analogy-driven proof-plan construction for analogically transferring
the method D12 of Cantor’s proof-plan to a method for the proof-plan of the halting problem.
Actually we shall transfer a proof-plan summarized by D12 to a proof-plan summarized by
Transferred D3. This transfer is cognitively substantiated by the fact that mathematicians
often describe their proving by analogy as applying a method used in another proof if this
method is named, such as the Diagonalization method. If the method is not named, then
they state that the target proof is done analogously to the source proof.

The analogy-driven proof-plan construction includes two different kinds of mapping
proof-plans or sketches, reformulation and restructuring as characterized below. Reformula-

19In case the planner searches only backward, the proof-plan definition and the analogy procedure are
simplified considerably.

11

tion denotes a sequence of reformulations which are triggered by a source sequent or method.
Reformulation aims at matching a source goal with a target goal or as many preconditions of
a source method with target assumptions respectively. Restructuring aims at providing sub-
methods of the source plan the postcondition (or preconditions) of which eventually matches
an open target goal (or assumptions) or at splitting a method that cannot be verified in order
to find a verifiable submethod. By finding a verifiable submethod the amount of work left
for the base-level planning is diminished.

Reformulations p map a proof-plan/sketch to another plan/sketch while preserving the
proof-plan/sketch structure. A set of admissible reformulations is stored in a data base. A
reformulation p consists of a mapping of methods M to methods, written as p applied to
M, and mappings of sequents P to sequents, written as p applied to P. The mappings of
methods are executed by so-called meta-methods that may change all slots of methods but
procedure. Some of the stored meta-methods are Term-Mapping, Homomorphy-Abstraction,
and Introduce-Function-Parameter. The changes of the pre- and postconditions by the
meta-method establish the mapping of the sequents. If p is applied to a sequent g (or to a
method M) of a plan P, then p has to be applied to the nodes in the P that are dependent
on g (or M). (Imagine, e.g., that a symbol is replaced by another one in M, then it has to be
replaced in the same way in all methods and sequents dependent on M.) Thus a reformulation
in analogy-driven proof-plan construction is not only dependent on p but also on the node
in P that triggers the reformulation.

Restructuring maps a proof-plan/sketch to another proof-plan/sketch by replacing a
sub-proof-plan P with one method by a proof-plan with several methods while preserv-
ing the root and leaves of P. We refer to restructurings that are executed by restruc-
turing meta-methods. Some of these meta-methods are Deduction-Theorem-Splitting,
Conjunctive-Decomposition, and Apply-Axiom-Splitting. For a more detailed motiva-
tion, description and examples see [9).

Table 1 shows the top-level procedure of the analogy-driven proof-plan construction. The
actual analogy procedure is embedded into the planning by a basic planner. Starting with a
given source proof-plan, target assumptions, and a target goal, the output of the procedure
is a proof-plan for the target goal.

12

fa—ry

. Terminate if there are no open goals.

2. If the source plan is exhausted, then base-level plan for the open goals. For open
goals that are not establishable, base-level plan for the closest preceding goal or
assumption found by restructuring.

3. Get next sequent P from the source plan. The sequent is either an assumption or a
goal.

4. Hf there is a reformulation p, such that pP matches an open target goal or a current
target assumption respectively, then go to step 7.

5. If restructuring possible, then
e Restructure and update source plan.
¢ Go to step 3.

Go to step 2.

Reformulate the source plan by p and triggered by P.

8. Select for the target the method M chosen in the source. If in the source M was a
forward-method, then go to step 13.
9. If M is not verifiable, then go to step 5.

10. Update open target goals and current target assumptions.

11. Link the new P and M to the source plan.

12. Go to step 1.

13. If there is a reformulation p’ such that |missing| < 0, for missing := set of precon-

ditions of p’M not matching a current target assumption, then
o Reformulate the source plan by p’ and triggered by M.
e Go to step 9.
14. Go to step 5.

No

Table 1: Outline of the analogy-driven proof-plan construction

The following specifics are to note in Table 1: Base-level plan in step 2 denotes the
basic planner activity. In step 13, 0 is a threshold usually set to 2. A goal g is considered
not establishable in step 2, if neither g not a reformulation of g holds for the target. This
judgement is to be provided by the user and may reduce the search notably.

3.4 Transferring D12 to D3

Let D12 be decomposed into submethods according to the dividing lines in D12. Since we
consider only a transfer from method D12 to a method D3, we start with the rerepresented
halting problem and the assumptions given in the text.

The postcondition is (§ F L) in both D12 and D3 and thus it does not require any refor-
mulation. The analogical transfer of D12 to D3 replaces the submethod with postcondition
(G € M2) by another method with postcondition (G € M2) found by base-level planning
because a precondition similar to that of (2) in D12 is not establishable in D3. Thus the jus-
tification for (G € M2) becomes a new method Method; that provides (G(z) = non F(zz)),
has also to be found by base-leve] planning.

Eventually matching the assumptions (8) in D12 and D3 requires an
Introduce-Function-Parameter reformulation for a parameter ¢ that includes the map

13

(z = cz) for all z. This reformulation has to be applied to all sequents and methods
dependent upon (8) in the source proof plan. Figure 4 shows the dependencies in the plan
summarized by D12, where the numbers represent proof schema lines and assumptions as is

Di12.

[operaie :
O goal or assumption 5

\/ notestblishable

OO0\

Figure 4: Dependencies in the proof-plan summarized by D12

Examining the current proof-plan shows that the submethods of D12 represented by line
4 - 14 and line 15 -17 are not dependent on (8) anymore. The analogy-driven proof-plan
construction has produced a proof-plan that is summarized by the method Transferred D3
shown below.

14

method: Transferred D3
parameter f{fcf ftmcil;iaon, non: (partial) function, M1, M2: structure,

(I)Vzgy(m € M2 - y € M1A F(y) = z), (5)Vz(z = z)
preconditions | (6)1 # 0 (7)H V-H,

(8) Vz((cz # 0 = c non(z) = 0) A (cz = 0 — c non(z) = 1))
postcondition { I |
constraints

1. ; F Vz(z € M1 — G(z) = non F(zz)) (Meth:

9. ; F GeM?2 (Methods)

3. F Jz(ze M1AF(z) =G) (AD(1) 1)

4. F F(zo)=G (3D 3)

5. ; b F(zo,z0) = G(zo) (equ 4)

6. ; F Vz(z € M1 - (cF(2zz) =0 — c¢G(z) = (Method,;(8)

1) A (cF(zz) # 0 - cG(z) = 0)) 1)
7. ; F (zo € M1 - (F(zoz0) =0— G(z9)= (VD 6)
1) A (F(zoz0) # 0 — G(zo) = 0))

8 ; b eF(zozp) =0V cF(zozo) # 0 (LEMMA)
proof schema | 9. ;9 F cF(zozo) =0 (AYP)

10.; 9 b eG(zo) =0 (equ. 9 5)

11.; 9 F eG(zo) =1 (AD—=D17

9)
12.; 9 Fo=1 (ALequ,(5)
11 10)

13.; 9 oL (ALLI(6))

14.; 14 F cF(zozg) # 0 (HYP)

15.; 14 F eG(zo) =0 (AD,—~ D

14 7)

16.; 14 b cF(zozo) =0 (equ 15 §5)

17.; 14 b eF(zozo) = 0 A ~cF(zozo) = 0 (A1 16 14)

18.; 14 oL (LI 17)

19.; oL (vD 18 13

8)
procedure schema-interpreter

Replacing Method; and Method; by method variables in Transferred D3 yields the
method D123 which can be used in proof-plans of Cantor’s theorem, of the uncountability
of R, and of the halting problem.

Some additional remarks on changes not directly belonging to the transfer of D12 to D3:
If the decomposition of D12 was not given at the beginning, then it could be established in
the cycles of the analogy procedure. If we were to transfer the whole proof plan, then we
would need to find an appropriate change of the representation of the halting problem by a
reformulation employing equivalences modulo the theory. The employment of (8) requires a
word of explanation. Actually, only the definitions of non and ¢ are given as assumptions
of the halting problem proof, and (8) is a lemma derived from these definitions. If (8) was

15

not provided as a lemma, it would be a goal that is not in the current state and to be
found by the analogy procedure: In step 13 a possible reformulation of (8) of D12 could be
created by Introduce-Function-Parameter, since instantiating the new parameter by the
characteristic function ¢ yields (8): Vz({(cz # 0 — cnon(z) = 0) A (cz = 0 - c non(z) = 1))
which can be established as an assumption for the halting problem proof.

3.5 Transferring D12 to D4

In the analogical truasfer of D12 to a method D4 for the Godel theorem proof-plan, a
submethod Methods;, for (G € M2) has to be found by base-level planning because a pre-
condition similar to (2) to in D12 is not establishable for D4. The assumptions (0) in D12
and D4 require an Introduce-Function-Parameter reformulation (for the parameter w)
that includes the mapping (F = wF'). The assumptions (8) of D12 and D4 require an
Introduce-Function-Parameter reformulation that includes the mapping (z = cz) for all
z. The reformulations have to be applied to the submethods dependent on (8) and (0).

Examining the current sketch shows that the submethods of D12 represented by lines
4 - 14 and lines 15 -17 are not dependent on (8) and (0) anymore. Thus the respective
reformulations do not affect these submethods. Up to this point the analogical transfer
has produced a sketch that is summarized by the method (Transferred D4) shown below,
which has a submethod represented by line 7 - 18 of the proof schema that cannot be verified.
According to the analogy procedure, this submethod has to be restructured at the places
indicated by “gap” in order to transfer as much as possible to a target plan. Two additional
submethods!! have to be inserted there, (which are superfluous in the case of D12) for
obtaining verifiable methods.

The submethod Methody, to be produced in order to create a proof plan makes use of
the w-completeness of S.

UE g., for ¢G(zo) = 1 F cwG(20) = 1 and ¢G(zg) = 0 + cwG(zo) = 0.

16

method: Transferred D4

F.non, c,w: function, M1, M2: structure, U: set, H: tor-

parameter
(O;bg@ € M2 — (z € M1 — wy(z) € U)),
" (A)Vz3y(z € M2 - y € MIAF(y) = z), 3WU C
preconditions | Jomain(non) (5)¥z(z = 2) (6)1 # 0 (T)(H v ~H),
(8)¥z((e(z) # 0 — c(non(z)) = 0) A (c(z) = 0 — ¢(non(z)) = 1))
postcondition | 1
constraints
1. ; b Vz(z € M1 — G(z) = non wF(zz)) (comprehens
2. ; F Ge M2 (Methoda;)
3. ; F Vz(z € M1 — (cwF(2zz) =0 — cG(z) = (Method, (8)
1) A (ewF(zz) # 0 — ¢G(z) = 0)) 1)
4. F 3z(z € M1AF(z) = G) (AD(1) 1)
5. ; F F(zo) =G @3D 4)
6. t F(zo,29) = G(zo) (equ 5)
not verified submethod
1. N F (Zo € Ml - (F(zoz‘o) =0—- G(zo) = (VD 3)
1) A (F(zo20) # 0 — G(zo) = 0))
8. ; F cwF(zozo) =0V cwF(zozg) # 0 (LEMMA)
proof schema | 9. ;9 F cwF(zozo) =0 (HYP)
10.; 9 F eG(zo) =1 (AD-D7
9
gap to be filled by (Method,))
11.;9 Fo=1 (ALequ,(5),1
12.;9 FoL (AL L1,(6))
13.; 13 b cwF(zozo) #0 (HYP)
14.; 13 F eG(zo) =0 (AD,—~ D
13 7)
gap to be filled by (Methods)
15.; 13 t ecwF(zoz0) =0 (equ,? 6)
16.; 13 F ewF(zozo) = 0 A "cwF(zoz0) =0 (AL 15 13)
17.;13 oL (LI 16)
18.; oL (VD 17 12
8)

procedure

schema-interpreter

ion)

N

Again, we do not detail the rerepresentation of D-Godel to D4 that does not belong to
the very transfer of D12 to D4. This rerepresentation is carried out by the introduction of
the characteristic function ¢ and that is eventually due to the aim of matching the assump-
tion (8) of D12 with (8) of D-Gddel. It is caused by an Introduce-Function-Parameter
reformulation substantiated by introducing a characteristic function ¢ into (8). The other
changes (introducing the new step (d) and changing the last step in D-Gadel) appear auto-
matically by the analogical procedure. The parameters have to be instantiated for a proof of
Godel’s theorem in the following way: non, ¢, w as defined in the text, F by the enumeration
of E, M1 by N, M2 by E and U by the set_of_meta formulas.

17

In order to obtain a method that can replace D1, D2, and D4 in the three plans and that
closer corresponds to the principle: “Make @ and a, differ in n”, the additional submethods
are moved up to Method;'2. A new Methods results with the postcondition (z¢ € M1 —
(cwF(z9z0) = 0 = cwG(zo) = 1) A (cwF(zo2¢) # 0 — cwG(zo) = 0))

method: Methods
parameter F,c,w: function, M1: structure
s (9)Vz(z € M1 - G(z) = non wkF(zz)),
preconditions | (8)va((e(z) # 0 - slnon) =) ee) = 0 tnen(c) = 1)
chs (zo € M1 — (cwF(zpzp) = 0 — cwG(zo) = 1) A(cwF(zozo) #0 —
postcondition cwGlzo) = 0))
constraints
1 ; F Vz(z € M1 - (cwF(zz) = 0 = ¢G(z) = (Method,,(§),(9))
HA (ch(za:Z # 0 — cG(z) = 0))
2. ; F (.‘I:QGMI—* F(zozo)"—"o—*G.’Bo): (VD 1)
DA (F(zozo) # 0 — G(z0) =0
proof schema |, zoy=1F cz;G((zo)(=010) (z0) = 0)) (PLAN4)
3. cGra)=0F cwG(ze) =0 (PLANS)
4 ; F (20 € M1 — (cwF(zozg) = 0 — cwG(zp) = (Methods;1
1) A (cwF(zoz0) # 0 — cwG(zg) = 0)) 23)
procedure

Note that the method variables PLAN4 and PLANS5 indicate that the respective methods
differ for the proof-plans of Cantor’s and Gédel’s theorem. Because of the instantiations of
the parameter w by the identity function, the methods to be inserted for PLAN4 and PLAN5
are trivial in all cases but in the Go6del proof-plan.

Employing Methods and its postcondition instead of Method;, replacing the method
represented by line 4 - 14 in D12 by the method variable PLAN3, and omitting preconditions
different in D12 and Transferred D4 yields the method D124 which can be used in proof-
plans of Cantor’s theorem, of the uncountability of IR, and of Godel’s theorem.

3.6 The Diagonal Method

Comparing D123 and D124 results in the method Diagonal that can be used in the proof-
plans of Cantor’s theorem, of the uncountability of R, of Godel’s theorem, as well as of the
halting problem.

12A means for moving submethods in a proof-plan is Bledsoe’s precondition prover [1].

18

method: Diagonal

F,c,w: function, non: (partial) function, M1, M2: struc-
ture, H: formula

()Vzdy(z € M2 - y € M1 A F(y) = z), (5)Vz(z = z)
preconditions { (6)0 # 1, (T)H V —~H,

(8)Vz((c(z) # 0 — c(non(z)) = 0) A (c(z) = 0 — c(non(z)) = 1))

postcondition | |

parameter

constraints

1. ; F vz(z € M1 — (G(z) = non wF(zz))) (PLAN?)

2. ; F Ge M2 (PLAN3)

3 ; t Iz(ze M1 - F(z)=G) (VD (1) 1)

4 ; F F(zo)=G 3D 3)

5. ; t F(zgzo) = G(zo) (equ 4)

6. ; F (cwF(zoz0) =0 — cwG(zo) = 1) (Methods)

A (cwF(zozo) # 0 — cwG(zo) = 0)

7. ; b cwF(zozo) =0V cwF(zozo) # 0 (LEMMA)

8. ;8 F cwF(zozo) =0 (HYP)

9. ;8 b cwG(zo) =0 (equ. 8 5)

proof schema | 19;8 F cwG(zo) =1 (AD—D6

8)

11.; 8 F0=1 (ALequ,(5)
9 10)-

12.; 8 oL (ALLI (6)
11)

13.;13 F cwF(zozo) #0 (HYP)

14.;13 F cwG(zo) =0 (AD,—D
13 6

15.; 13 F cwF(zozo) =0 (equ 14 5)

16.;13 F cwF(zozp) =0A-cwF(zozo) =0 (A1 15 13)

17.; 13 FoL (L1 16)

18.; F L (vD 17 12
7)

procedure schema-interpreter

Diagonal is a top-level method, which means it represents a proof idea and leaves some
methods unspecified which prove details. The method variables PLAN; have to be instan-
tiated for particular applications of the Diagonal method. Basically, PLAN1, PLAN2, and
Methods together denote the unspecified proof of what is often called the “diagonalization
lemma” in mathematical diagonalization proofs.

4 Acknowledgement

The first two presented cases are based upon investigations and Natural Deduction proofs
provided by my colleagues Xiaorong Huang and Manfred Kerber, who also did most of the

19

work towards the representational framework. I would also like to thank Jorn Richts for
thoroughly reading a draft of this paper.

References

(1] W. Bledsoe. A precondition prover for analogy. In Biosystems. 1994. in press.

[2] G.S. Boolos and R.C. Jeffrey. Computability and Logic. Cambidge University Press,
Cambridge, third edition, 1989.

[3] A. Bundy. The use of explicit plans to guide inductive proofs. In E. Lusk and R. Over-
beek, editors, Proc. $th International Conference on Automated Deduction (CADE),
volume 310 of Lecture Notes in Computer Science, pages 111-120, Argonne, 1988.
Springer.

[4] G. Cantor. Contributions to the Foundation of the Theory of Transfinite Numbers.
Dover (Reprint), New York, 1955. ‘

[5] N. Cutland. Computabdility, an Introduction to Recursive Function Theory. Cambridge
University Press, Cambridge, New York, 1980.

(6] X. Huang, M. Kerber, and M. Kohlhase. Methods - the basic units for planning and
verifying proofs. SEKI-Report SR-92-20 (SFB), Universitat des Saarlandes, 1992.

{7] H.R. Lewis and C.H. Papadimitriou. Elements of the Theory of Computation. Prentice
Hall, 1981.

[8] E. Melis. Change of representation in theorem proving by analogy. SEKI-Report SR-
93-07, Universitat des Saarlandes, Saarbricken, 1993.

[9] E. Melis. Decomposition techniques and their applications. In Proc. AIMSA 94, Sofia,
Bulgaria, 1994.

(10] E. Mendelson. Introduction to Mathematical Logic. Van Nostrand Company Inc., Prince-
ton, 1964.

[11] S.C.Kleene. Introduction to Metamethematics. North Holland Publ Co., Amsterdam,
1952.

20

